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A Software Tool for Dataflow Graph Scheduling

i :

Robert L. Jones III

NASA Langley Research Center

A graph-theoretic design process and software tool is presented for selecting a

multiprocessing scheduling solution for a class of computational problems. The problems of

interest are those that can be described using a dataflow graph and are intended to be executed

repetitively on multiple processors. The dataflow paradigm is very useful in exposing the

parallelism inherent in algorithms. It provides a graphical and mathematical model which

describes a partial ordering of algorithm tasks based on data precedences. That is, some tasks

must execute in a particular order whereas other tasks may execute:independent of other tasks.

Dataflow graph nodes represent schedulable tasks and edges represent the data dependencies

between the tasks. Analytical analysis oft:he dataflow graph is possible for many digital signal

processing (DSP) and control law algorithms which are deterministic. For determinism, the

model is applicable to a class of dataflow graphs where the time to execute tasks are assumed

constant from iteration to iteration when executed on a set of identical processors. Also, it is

assumed that the dataflow graph is data independent. Any decisions present within the

computational problem must be contained within the graph nodes rather than described at the

graph level. Special transitions called sources and sinks are also provided to model the input and

output data streams of the task system. The presence of data is indicated by marking the dataflow

graph with tokens. The graph transitions through markings as a result of a sequence of node

firings. A node is enabled for firing when a token is available on every input edge of the node,

indicating that the task has all of its operands. When the node fires, it encumbers one token from

each of its input edges, delays an amount of time equal to the task latency, and then deposits one

token on each of its output edges. Sources and sinks have special firing rules in that sources are

unconditionally enabled for firing and sinks consume tokens, but do not produce any. By

analyzing the dataflow graph in terms of its critical path, critical circuit, dataflow schedule, and

the token bounds within the graph, the performance characteristics and resource requirements can

be determined a priori.

As for any mathematical model, there is a need for efficient software tools which facilitate

the use of the model in solving problems. A software program, referred to as the Dataflow

Design Tool, was developed at Langley to apply the dataflow model and design multiprocessor

solutions for spaceborne applications. The tool was written in C++ for Microsot_ Windows 3.1 or

NT can be hosted on an i386/486 personal computer or compatible. The Design Tool takes input

from a text file which specifies the topology and attributes of the dataflow graph. A Graph Tool

was developed to facilitate the creation of the graph text file. The various displays and features

are shown to provide an automated and user-interactive design process which facilitates the

selection ofa multiprocessor solution based on dataflow analysis. Performance metrics

determined automatically by the Dataflow Design Tool include the minimum time to execute all

tasks for a given computation (schedule length), the minimum time between graph input and the

corresponding output (TBIOlb), the minimum graph-imposed iteration period (To), and the

minimum time between outputs (TBOIb). Also, the tool determines if tasks can be delayed a finite

amount of time without degrading performance, referred to as slack time. Since the edges imply

the physical storage of data, the tool can calculate the minimum data buffers required for proper
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sharing of data between tasks. In addition to numerical performance metrics, the tool graphically

portrays system behavior using Gantt charts and resource envelopes. The Single Graph Play

displays the steady-state task schedule associated with a single computation, and the Total Graph

Play displays the periodic, steady-state task schedule over a single iteration period.

The analysis and multiprocessor mapping of a finite impulse response (FIR) filter is

illustrated. A linear phase FIR filter is selected since it requires half the number of multiplies of

other FIR realizations. DSP problems are very suitable for dataflow analysis since they are

typically described as signal flow graph. One can easily translate signal flow graphs to dataflow

graphs by locating the computations (addition and multiplication) and representing unit delays

(inverse z terms) with initial tokens. Once the filter has been captured into the Graph Tool it can

be analyzed by the Dataflow Design Tool to expose the inherent parallelism and determine graph-

theoretic performance bounds. Since there are many realizations of the same filter, characterized

by different dataflow graphs, the Dataflow Design Tool can be useful in determining which

realization exposes the most parallelism. The SGP shows that some of the additions can execute

in parallel (C 1 through C4), enabling the parallel execution of the multiplies, and finally the

sequential summation to generate the output sample. The SGP bars are shaded to depict the read,

process, and write activities of the processor, and the hollow bars denote slack time associated

with some tasks. In addition to the parallel concurrency, the TGP shows pipeline concurrency

that may be exploited. In this example, the TGP shows that at most 4 different data samples may

be computed within a sampling period of 224 time units. The Total Resource Envelope shows

that 10 processors are required to achieve this level of throughput. The dataflow analysis applied

to the dataflow graph and portrayed in the graph play diagrams assume infinite resources

(processors and memory) so that the exposed parallelism is limited only by the data precedences.

If there is not enough resources to exploit the inherent parallelism, the schedule must be

optimized. As an example, lets assume that a fully-static schedule (i.e., a task will execute on the

same processor for every iteration) on 8 processors is desirable to minimize run-time overhead.

The Dataflow Design Tool shows that such a solution can be achieved by inserting two additional

"artificial" data dependencies and increasing the sampling period to 260 time units. The tool can

also display the periodic memory accesses within a periodic schedule. Such an assessment may be

useful to optimize the schedule based on the limited bandwidth between processors or processors

and memory. Once a desirable solution is obtained, the tool can summarize the scheduling

constraints in terms of earliest start (ES), latest finish (LF), and slack time. The summary of run-

time requirements include task instantiations (INST) defined as the number of processors a task

will have to execute on simultaneously for different data sets. For a fully-static schedule, one

would expect all instantiations to be 1 as shown. Also, the buffer sizes (QUEUE) for shared data

is given along with the number of initially empty buffers (OE) and the number of initially full

buffers (OF) due to initial data.

In summary, the dataflow paradigm provides a general model suitable in exposing

parallelism inherent in algorithms as fine-grain as filters to more computationally complex

algorithms where a node might represent an entire filter. When the algorithm is deterministic, the

Datafiow Design Tool can analytically determine the steady-state behavior, performance bounds,

scheduling constraints, and resource requirements, By permitting the user to insert artificial data

dependencies, the dataflow schedule can be optimized to match resource requirements with

resource availability.
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A Software Tool for Dataflow

Graph Scheduling

June 15.1994

Robert L. Jones III

NASA Langley Research Cettter

Hampton, Virginia

Outline

• Functional Overview

• Analysis of a DSP Filter

• Static Scheduling and Optimization

• Summary
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Dataflow Design Tool .....

Task System, ( _, _ ..<, _ ) Performance Bounds

• T Set of Tasks • Schedule Length, (o

• £ Fixed Task Latencies _ Dataflow • Time Between nput & Output,
• -< Partial-0_de_ _ _ ._" Graph (DFG)

• _ Initial State : ' Mi_mum !tetat on Period, T O
• Time Between Outputs TBO_

::::: Slack

Dataflow Graph

• Nodes Represent 'T

• Edges Describe-<

• Tokens Indicate Presence of Data

• Initial Marking =

ii:

• Proces_ ;Util_ation

Run,;Ti_ Requirements
Task ...............

.=quirement
:Dat_ _ffers

• ArtifiCiai _i Control Edges

::: ::: :::

Graphical Di_pi_s
• Gantt-C_ :/'ask Execut on

• Single teration (SGP)

• Periodic Execution (TGP)

• Resource Envelopes

x(n) (3

Eight-Order, Linear Phase FIR Filter

Task.___._ss

Direct Form Signal Flow Graph C1+

C2+

z'l z't z4 C3+

m C4+
CS*

C6"

C7"

C8"

C9+

C10+

Cl1+

y(n)

Instructions

x0. =x(n) + x(n-7)

Xl= x(:nil ) + x(n-6)

x_ = x(n.,2) + x(n-_)

x3 = x(n-3) + x(n-4)

x4 = x0 * h(0)

x_ = X_ * h(1)

X6 = x 2 * h(2)

x7 = x3 * h(3)

X 8 = X 4 + X 5

X9 = }(6 + X8

y(n) = x7 + },.9

A DSP signal flow graph is a Dataflow Graph where the z -_ unit delays can be

modeled with initial tokens. Thus, run-time implementation of delay does not

incur any overhead. Unit delays are simply implemented by initializing FIFO
queues used for intermediate data.
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Dataflow Graph Capture of FIR Filter
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Multiprocessor Implementation Example
Assumptions:

Performance

224

t_ 140

Division of Effort

Proc_==lng = 1500

IFlead_/Vlil¢ = 290

Ore,head = 1G,2_

Shared memory with no contention
Multiplies take 200 time units
Additions take 100 t/me units

One-operand read/writes take 10 time units
Two-operand read/writes take: 20 time units

Data-Driven Schedule for One iteration

! IIII+Lt,IL_. luil_ , :k:|:l_

8.Order FIR Filter

I •n I
I ( I

CS" _; :! !_;!!ii;11 I ]

I

_ ,,_ ,
i ' 7!i_! :!:!i:_i:_ ! !:i?_i

_)}:?_:!:i}? ::? ??}?:i?:!} ; ?lJ :

"rIME 0 (740) :
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Exposing the Parallelism in the FIR Filter
Speedup Potential

Steady-State Periodic Schedule _-_ ,
$peMUp
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Optimization for 8 Processors
A fully-static schedule is desired for minimum run-time overhead.

Single-Iteration Schedule
Artificial Data Precedences

,:_ ................. ,,,,--,._-,,-_-.-".................. i ....

g-Order FIR Filter C1+ < C4+
:'" I _ C2+ "<, C3+

1____==========

_" I _ I Periodic Schedule ;

L

c_ mlmmaumBm_Ilm_ I

TIME 0 (740)
=========================================================================:::::::::::::::::::::::::::::::::" :::::_:

1/90

_eo

_ ,-iii
_'° ii

g-Order FIR Filter
_11* i

F

:::......................................... I I

II I
TIME 0 (260):

*_l_;l: :!_:::::::!_::::::::i:;:::::::::!::::::::::_::_:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Fully-Static Processor Requirements

Sampling Period = 260 time units

l'ota! Of 8 DSP Ch ps are Requ red

Processor Assiqnments

P1 {C1+, C4+}

P2 {Cz., c3+)
P3 {cs*)
P4 {C6"}

P5 {C7"}

P6 {C8"}

P7 {C9+, C10+}

P8 {Cl1+}

ii :iiii:

r !;"

i ¸

i

Analysis of Memory Access

Optimized schedule has better distribution of memory accesses which e.g., can

be accomodated with 6 independent communication ports in the TMS320C40's.

Unoptimized Schedule

u, ....... 111II *:|'

g-Order FIR Filter

ct_ .... .: .... :]'. ::::: ..::_;:_ ::: ::If, .--

m::: ::i:!:7:::_::::ii:::

=============================================:::i::_::::;:I .....

========================================================================================

Too many localized memory
referencesl

Optimized Schedule

0_.+ l,,,k+,.

g-Order FIR Filter

:1 r.

i:: B .........................,++%++....................+_

===========================================================================

TIME 0 (260)

Memory references are more
evenly distributed.
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Summary of Fully-Static Multiprocessor Solution
FIR Filter

_Iplly

Summary

• Dataflow provides a general model of computation
capable of exposing fine- and large-grain
parallelism.

• Design Tool provides analytic, compile-time
prediction of:

- Steady-state behavior

- Graph-theoretic performance bounds

- Iterative run-time scheduling criteria

• Permits inclusion of artificial precedences for
optimization.

• Facilitates selection of static run-time schedules.
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Use of Software through Pictures on CERES

The CERES team has been using the Yourdon/DeMarco Structured Analysis/Structured Design

methodology to develop the data management system for producing higher order science data

products from CERES instrument data. As part Of this effort, the team is using the Software

through Pictures CASE tool to automate portions of the methodology. This presentation

addresses the team's experiences with the selected methodology and CASE tool, describes lessons

learned, and provides recommendations for other teams contemplating the use of structured meth-

odologies and CASE tools.

Software Engineering methodologies can help developers create systems in less time with higher

reliability and quality by providing tools for managing the complexity inherent in software sys-

tems and development programs, CASE tools can facilitate using a methodology by providing

tools for creating and maintaining requirements and design models, automating consistency and

completeness checking, and automating much of the bookkeeping associated with following the

methodology. This allows developers to focus on the creative aspects of software design and

development.

Overall, our experience on CERES has been that structured methodologies and CASE tools prove

useful in creating, maintaining, and documenting high quality requirements and analysis products.

Although the learning curves associated with these tools require an investment in time and train-

ing early on, the benefits to be gained are well worth the effort and our productivity continues to

increase as we become more familiar with the methodology.

To date, the CERES data management team has used the tool to model more than 130 data prod-

ucts down to the level of atomic variables, define each data element in terms of type, units, accu-

racy, and number of bits, and create documentation from the information stored in the models.

Since the CERES system is primarily a science data processing system which generates more than

5 terabytes of data per month, focusing on the system's data products has led to a deeper under-

standing of processing needs and resulted in higher quality functional requirements. Furthermore,

the graphical editors and consistency checking features provided by the tool have allowed the

team to rapidly iterate through the modelling process in less time than would have been required

without the tool.

The data management team is currently analyzing system functional requirements by modelling

the functionality needed to process instrument and higher order science data. Here again, the tool

speeds up the process of iterating on the model to converge on a final solution. In addition, the

tool has allowed the team to automatically produce software requirements documents in a stan-
dard format from information contained in the CASE tool database.

We have incorporated several customizations in order to tailor the CASE tool to support the spe-

cific processes employed on CERES. These customizations include creating templates for pro-

ducing CERES-specific documentation, enhancing the CASE tool main menu, and integrating

the CASE tool with the FrameMaker desktop publishing package. The CASE tool is supplied

with templates for producing documentation that complies with military software standards.

Since these standards were not appropriate for NASA publications, we developed templates for
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several documents including a Software Requirements Document, Data Products Catalog, and

Data Dictionary as well as several utilities to provide hard copies of details stored in the tool's

database for developer's use in reviewing their models. We have also modified the tool's main

menu to simplify the user interface for creating documents. Finally, there are several places in the

tool where the developer adds detail to the requirements or design model by entering free form

text. These items include functional descriptions, data product descriptions, and _nterface

descriptions. The CASE tool only supports ASCII text and, since much of our processing is

described in terms of equations, tables, and graphics this restriction limited our ability to fully

describe the necessary processing. Therefore, we have modified the tool to allow the use of

FrameMaker (desktop publishing/word processor) for entering descriptions of functions, data

products, and interfaces. This allows a designer to include any combination of text, graphics,

tables, and equations in these descriptions which are then included directly into the documenta-

tion produced using the tool.
!i:

Our experience indicates that when combined with well,structured methodologies, CASE tools

can provide a important component of a development environment which helps designers create

software products with higher quality in less time. However, the key to achieving productivity

gains is the process used to design the software. The processes incorporated in structured analysis
and structured design provide a sound framework for creating complex software systems and

must be adopted in order to derive any benefits from the use of automated tools such as Software

through Pictures.

c
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Use of Software through Pictures

on CERES

The Role of Computers in LaRC R&D Workshop

June 15-16, 1994

Troy Anselmo

Science Applications International Corporation
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INTRODUCTION

• CERES Overview

• Software Development Methodology

° CASE Tool Capabilities and Configuration

.,,j

• Experiences to Date

° Lessons Learned/Recommendations
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CERES OVERVIEW

° Scientific Data Processing Application

° Approximately 500K Source Lines of Code

° Organized into 12 Subsystems (CSCIs)

° Generates More Than 5 TeraBytes of Data per Month

° Operates within the EOSDIS Environment

° Languages include FORTRAN, C, Ada

n_
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METHODOLOGY (cont'd)

• Structured Analysis/Structured Design

° Model Based Approach

• Emphasis on Early Life Cycle Phases

° Requirements- Model functionality

° Design - Models Architecture of Solution

W
An Employee-Owned Company _



METHODOLOGY (cont'd)

-'-- CRS

PARAM_FSW

QC_FSW
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one hour
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CASE TOOL CAPABILITIES

• Automate Portions of Methodology so Developers can

Focus on Creative Aspects of Software Design

° Provide Tools to:

° Rapidly Create and Modify Models

t,g ° Capture Models in Central Repository

° Check Model Validity (Completeness, Consistency)

° Support Multiple Developers in Work Group Environment

° Create Documentation from Models in Repository

An Employee-Owned Cornpan)7"
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EXPERIENCES TO DATE

= Achievements

° Data Products Modelled (incl. Data Structure and Data Description
Details)

° Data Product Catalogs Generated from Data Models (Sizing
Analysis Computed by Tool)

° Currently Modelling Each Subsystem

° Automatically Produce Requirements Documentation in Standard
Format for Each Subsystem

WJe'ruil_®
An Employee-Owned Company"
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EXPERIENCES (cont'd)

• Issues

- Multiple-Site Configuration Complicated System Administration

Functions

ba

- Document Definition in Parallel with Template Development

Resulted in Excessive Template Iterations

- Loose Configuratmn Management of Custom=zatlons Created
ong M Itiple SitesSynchronization Problems Am u :

- Lack of CASE/Methodology Expertise at Each Site Slowed CASE

Tool Adoption

_uurilrli_®
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EXPERIENCES (cont'd)

- Quality Action Team Established by NASA to Address __'_/

Concerns, Improve CASE Tool Use

° Membership From All Organizations

t_

° Results to Date Have Been Very Positive

° Enhanced Understanding and Awareness of Concerns Among

Organizations

° Simplified System Administration Process and Configuration

° Establish Forums for Information Dissemination, •Identified

Training Needs, Conducted Training

° Improved Development, Test, CM Process for Customizations

An Employee-Owned Company _



LESSONS LEARNED/RECOMMENDATIONS

• CASE Tool Introduction Represents Potential Culture
Change

O0

° Strong Management Support Required

° Steering Committee Useful for Coordinating Adoption Process

• Timely Dissemination of InfOrmation Necessary, Exploit Electronic

Communications Media (e-mail, bulletin boards, WWW)

° Methodology is Key Element, Training is Critical

° CASE is Engineering Tool, Documentation is By-Product

• Customizations Represent Development of Utility Codes, Should Use
Structured Development Process

An Employee-Owned Compan_y _
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SESSION 4 Solutions of Equations

Chaired by

Olaf Storaasli

4.1 Rapid Solution of Large-scale Systems Of Equations - Olaf Storaasli

4.2 Solution of Matrix Equations Using Sparse Techniques -Majdi Baddourah

4.3 Equation Solvers for Distributed Memory Computers - Olaf Storaasli
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